

Pantograph developments with special regard to the catanery-pantograph contact

© Siemens 2019 www.siemens.com/mobility

Pantograph developments with special regard to the catanery-pantograph contact

- Introduction
- Challenges
- Trends to improve the pantograph / OCL interaction
- Monitoring
- Advancements in Simulation and Emulation

Introduction

A short introduction to pantographs and overhead contact lines

Pantograph main components

Main overhead contact line (OCL) / catenary components

The shown example of a modern OCL system is already in use on the following routes:

- Bajánsenye-Boba, HU, since 2010
- Banedanmark, Denmark, ~1,300 km until 2026

Operating conditions for pantographs

Single arm pantographs

Modern single arm pantographs require less space on vehicle roofs and incorporate better dynamic characteristics

Despite their asymmetric shape they must ensure safe and reliable operation in both running directions

Challenges

Challenges of interoperability in cross boarder operations throughout Europe

European railway networks

a multitude of systems

European railway corridors

© Siemens Mobility 2019

Ingenuity for life **Core TEN-T network corridors**

Corridor Route

- 1. Baltic-Adriatic: includes the Semmering base tunnel and Koralmbahn.
- 2. North Sea-Baltic: the most important element of this corridor is Rail Baltica.
- 3. Mediterranean: rail projects include Lyon Torino and Venezia – Ljubljana.
- 4. Orient/East-Med.

5. Scandinavian-Mediterranean: includes Fehmarn Belt fixed link and Brenner base tunnel.

6. Rhine-Alpine: includes Swiss base tunnels and access routes in Germany and Italy.

- 7. Atlantic: includes high speed and conventional rail.
- 8. North Sea-Mediterranean.
- 9. Rhine-Danube Corridor

SIEMENS

European railway networks – a multitude of systems Focus: Overhead contact line current

OCL sections

traversing overhead contact line section overlap

Example of 25 kV overhead contact line overlap section

Challenge of traversing OCL overlap sections

© Siemens Mobility 2019

Sgl

Seite 15 02.10.2019 02.10.2019 02.10.2019 02.10.2019

\$01

Contact quality and wear

Finding the sweet spot

Operating conditions for pantographs

FCROSSWIND FAERO FAERO FAERO FAERO

Video 1: Forces on the pantograph and contact strip wear

Pantograph contact strip wear

Pantograph contact strip wear

© Siemens Mobility 2019 Seite 19 02.10.2019 02.10.2019 02.10.2019 02.10.2019

Pantograph contact strip wear

© Siemens Mobility 2019 Seite 20 02.10.2019 02.10.2019 02.10.2019 02.10.2019

Multiple traction

operating with multiple pantographs simultaniously

Multiple pantograph operation

Video 2: Multi traction test runs

Multiple traction

New challenges arise when more than one one pantograph ist interacting with the overhead contact line

Multiple traction can occur if

- Higher currents or higher power demand
- Coupling multiple, individually powered rolling stock units to a single train

Appropriate pantograph spacing is critical

Trends for improvement

of pantograph / overhead contact line interaction

General trends for improving pantograph / OCL interaction

The following trends can be observed in the railway industry to improve the contact quality and reduce wear regarding the pantograph / catenary interaction

- •Lightweight design
- •Actively influencing the contact force
- •Monitoring pantograph / OCL interaction
- •Improvements in simulation and emulation

Focus for today

Monitoring

Improving safety and overall operations via methods of pantograph and overhead contact line monitoring

 F_c = contact force

 $F_{Sensori}$ = measured force at sensor i

- $a_{Sensor,i}$ = measured acceleration at sensor i
- k_f = number of force sensors
- k_a = number of acceleration sensors
- m_{above} = mass of the panhead located above the force sensors
- $F_{\text{corr,aero}}$ = aerodynamic correction force

(velocity dependent, retrieved from lookup table)

- Force under zigzag actuation scenario

© Siemens Mobility 2019 Seite 27 02.10.2019 02.10.2019 02.10.2019 02.10.2019

- Sum force per contact strip in red and blue
- **Bigger impact** \bullet

Simulation / Emulation

Improvement in pantograph and overhead contact line interaction via advanced simulation and introduction of emulation

Status quo of simulating pantograph / OCL interaction

Current theoretical simulations of pantograph / catenary interaction are based on **simplified lumped mass models** of the pantographs in question. Such detailed simulations take hours or even days to deliver results for a certain combination of overhead contact line and pantograph model, for a limited scope of a certain amount of spans (e.g. 10) including one overlap section.

Lumped mass models generally consist of:

M … Mass (x3) C … Damping (x3) K … Spring rate (x3) S … Damping (x3) F … Force (x3)

External forces

Mainly aerodynamic influences depending on running speed and direction

Static contact force As provided by the actuator

Multiple-body simulation

Introducing multi body simulation can greatly improve the predictability of pantograph characteristics and pantograph / OCL behaviour

running direction

Real time simulation of pantograph / OCL interaction

In case of our method of **real time OCL simulation** a window moves along the simulation model of the overhead contact line and solves all necessary equations around the pantograph model in real time

Real time simulation of pantograph/OCL interaction

Introducing real time simulation methods of pantograph/OCL interaction enables new methods for hardware-in-the-loop testing

> Video 3: Interaction pantograph/OCL Carrier Wire Contact Wire

SIEMENS Ingenuity for life

Emulation

Incorporating hardware-in-the-loop testing to aid the development homologation process

Status quo Gap between simulation and field testing

Simulation

Lumped mass

© Siemens Mobility 2019

Transitioning from OCL simulations with simplified pantograph models to field tests can entail the following risks:

- **Safety risks** (can it be done safely?)
- **Technical risks** (can it be done at all?)
- **Deadline risks** (can it be done in time?)
- **Economical risks** (can it be done on budget?)

Field tests

Vehicle test runs under operating conditions

Examples of pantograph test rigs for hardware-in-the-loop (HIL) testing

DB Systemtechnik **Political** Polimi

SIEMENS pantograph test rig

SIEMENS pantograph test rig

High-end hardware-in-the-loop testing by combining real time simulation with hardware-in-the-loop testrigs

High-end hardware-in-the-loop testing by combining real time simulation with hardware-in-the-loop testrigs

Expanding the scope for multi traction

Scalable scope expansion via multiple real time windows

Hardware-in-the-loop-testing closing the gap between simulation and field testing

Simulation

- Lumped mass
- Multi body

Emulation Hardware-in-the-loop testruns

Field tests

Vehicle test runs under operating conditions

Introducing **hardware-in-the-loop testing** to bridge the gap between theoretical simulations and field tests

- **Minimizes risks (technical and economical)**
- **Improves safety**

Thank you very much for your attention

Herausgeber: Siemens Mobility GmbH

Christian Saliger R&D Engineer MO RS SC BG PN

Siemensstraße 90 1210 Wien

Phone (mobile): +43 664 88 55 32 22

E-Mail: [christian.saliger@siemens.com](mailto:Christian.saliger@siemens.com)

siemens.com